skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available June 24, 2026
  3. Free, publicly-accessible full text available May 22, 2026
  4. Free, publicly-accessible full text available April 28, 2026
  5. Viscous fingering, a classic hydrodynamic instability, is governed by the the competition between destabilising viscosity ratios and stabilising surface tension or thermal diffusion. We show that the channel confinement can induce ‘diffusion’-like stabilising effects on viscous fingering even in the absence of interfacial tension and thermal diffusion, when a clear oil invades the mixture of the same oil and non-colloidal particles. The key lies in the generation of long-range dipolar disturbance flows by highly confined particles that form a monolayer inside a Hele-Shaw cell. We develop a coarse-grained model whose results correctly predict universal fingering dynamics that is independent of particle concentrations. This new mechanism offers insights into manipulating and harnessing collective motion in non-equilibrium systems. 
    more » « less
    Free, publicly-accessible full text available May 25, 2026
  6. Free, publicly-accessible full text available April 3, 2026
  7. Free, publicly-accessible full text available February 28, 2026
  8. Free, publicly-accessible full text available March 1, 2026
  9. Free, publicly-accessible full text available April 1, 2026
  10. Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production, necessitating the development of resistant cultivars through genetic improvement. Breakthroughs in rice genomics, including the complete genome sequencing of japonica and indica subspecies and the availability of various sequence-based molecular markers, have greatly advanced the genetic analysis of blast resistance. To date, approximately 122 blast-resistance genes have been identified, with 39 of these genes cloned and molecularly characterized. The application of these findings in marker-assisted selection (MAS) has significantly improved rice breeding, allowing for the efficient integration of multiple resistance genes into elite cultivars, enhancing both the durability and spectrum of resistance. Pangenomic studies, along with AI-driven tools like AlphaFold2, RoseTTAFold, and AlphaFold3, have further accelerated the identification and functional characterization of resistance genes, expediting the breeding process. Future rice blast disease management will depend on leveraging these advanced genomic and computational technologies. Emphasis should be placed on enhancing computational tools for the large-scale screening of resistance genes and utilizing gene editing technologies such as CRISPR-Cas9 for functional validation and targeted resistance enhancement and deployment. These approaches will be crucial for advancing rice blast resistance, ensuring food security, and promoting agricultural sustainability. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026